Course curriculum

  • 1

    Lesson 1

    • 1-1 Anaconda

    • 1-2 Data Types with Python

    • 1-3 Basic Operators and Functions

    • 1-4 Key Takeaways

  • 2

    Lesson 2

    • 2-1 Introduction to Numpy

    • 2-2 Demo 01-creating and Printing an Ndarray

    • 2-3 Basic Operations

    • 2-4 Mathematical Functions of Numpy

    • 2-5 Assignment 01 Demo

    • 2-6 Assignment 02 Demo

    • 2-7 Key Takeaways

  • 3

    Lesson 3

    • 3-1 Introduction to Scipy_2

    • 3-2 Demo 01-creating and Printing an Ndarray_2

    • 3-3 Demo - Calculate Eigenvalues and Eigenvector

    • 3-4 Scipy Sub Package - Statistics, Weave and Io

    • 3-5 Assignment 01 Demo

    • 3-6 Assignment 02 Demo

    • 3-7 Key Takeaways

  • 4

    Lesson 4

    • 4-1 Introduction to Pandas

    • 4-2 Understanding Dataframe

    • 4-3 View and Select Data Demo

    • 4-4 Missing Values

    • 4-5 Data Operations

    • 4-6 File Read and Write Support

    • 4-7 Pandas Sql Operation

    • 4-8 Assignment 01 Demo

    • 4-9 Assignment 02 Demo

    • 4-10 Key Takeaways

  • 5

    Lesson 5

    • 5-1 Machine Learning Approach

    • 5-2 Steps 1 and 2

    • 5-3 How It Works

    • 5-4 Steps 3 and 4

    • 5-5 Supervised Learning Model Considerations

    • 5-6 Scikit-learn

    • 5-7 Supervised Learning Models - Linear Regression

    • 5-8 Supervised Learning Models - Logistic Regression

    • 5-9 Unsupervised Learning Models

    • 5-10 Pipeline_1

    • 5-11 Model Persistence and Evaluation

    • 5-12 Assignment 01

    • 5-13 Assignment 02

    • 5-14 Key Takeaways

  • 6

    Lesson 6

    • 6-1 Introduction to Data Visualization-mp4_1

    • 6-2 (x,y) Plot and Subplots

    • 6-3 Types of Plots

    • 6-4 Assignment 01 Demo

    • 6-5 Assignment 02 Demo

    • 6-6 Key Takeaways

  • 7

    Lesson 7

    • 7-1 Web Scraping and Parsing_1_1

    • 7-2 Navigating a Tree

    • 7-3 Modifying Tree

    • 7-4 Parsing and Printing the Document

    • 7-5 Key Takeaways

  • 8

    Lesson 8

    • 8-1 Why Big Data Solutions Are Provided for Python

    • 8-2 Python Integration with Hdfs Using Hadoop Streaming

    • 8-3 Using Hadoop Streaming for Calculating Word Count_1_1

    • 8-4 Python Integration with Spark Using Pyspark

    • 8-5 Using Pyspark to Determine Word Count

    • 8-6 Assignment 01 Demo

    • 8-7 Assignment 02 Demo

    • 8-8 Key Takeaways